Seismic impedance inversion using l1-norm regularization and gradient descent methods
نویسندگان
چکیده
We consider numerical solution methods for seismic impedance inversion problems in this paper. The inversion process is ill-posed. To tackle the ill-posedness of the problem and take the sparsity of the reflectivity function into consideration, an l1 norm regularization model is established. In computation, a nonmonotone gradient descent method based on Rayleigh quotient for solving the minimization model is developed. Theoretical simulations and field data applications are performed to verify the feasibility of our methods.
منابع مشابه
Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملAccelerated Projected Gradient Method for Linear Inverse Problems with Sparsity Constraints
Regularization of ill-posed linear inverse problems via l1 penalization has been proposed for cases where the solution is known to be (almost) sparse. One way to obtain the minimizer of such an l1 penalized functional is via an iterative soft-thresholding algorithm. We propose an alternative implementation to l1-constraints, using a gradient method, with projection on l1-balls. The correspondin...
متن کاملTomographic inversion using l1-norm regularization of wavelet coefficients
We propose the use of l1 regularization in a wavelet basis for the solution of linearized seismic tomography problems Am = d, allowing for the possibility of sharp discontinuities superimposed on a smoothly varying background. An iterative method is used to find a sparse solution m that contains no more fine-scale structure than is necessary to fit the data d to within its assigned errors. keyw...
متن کاملComposite Objective Mirror Descent
We present a new method for regularized convex optimization and analyze it under both online and stochastic optimization settings. In addition to unifying previously known firstorder algorithms, such as the projected gradient method, mirror descent, and forwardbackward splitting, our method yields new analysis and algorithms. We also derive specific instantiations of our method for commonly use...
متن کاملNon-linear constraints with application to self-potential source inversion
We investigate the use of non-linear constraints for geophysical inverse problems, with specific examples applied to source inversion of self-potential data. Typical regularization methods often produce smooth solutions by introducing a quadratic term in the objective function that minimizes the L2 norm of a low-order differential operator applied to the model. In some cases, however, the prope...
متن کامل